Effect of RyhB small RNA on global iron use in Escherichia coli.
نویسندگان
چکیده
RyhB is a noncoding RNA regulated by the Fur repressor. It has previously been shown to cause the rapid degradation of a number of mRNAs that encode proteins that utilize iron. Here we examine the effect of ectopic RyhB production on global gene expression by microarray analysis. Many of the previously identified targets were found, as well as other mRNAs encoding iron-binding proteins, bringing the total number of regulated operons to at least 18, encoding 56 genes. The two major operons involved in Fe-S cluster assembly showed different behavior; the isc operon appears to be a direct target of RyhB action, while the suf operon does not. This is consistent with previous findings suggesting that the suf genes but not the isc genes are important for Fe-S cluster synthesis under iron-limiting conditions, presumably for essential iron-binding proteins. In addition, we observed repression of Fur-regulated genes upon RyhB expression, interpreted as due to intracellular iron sparing resulting from reduced synthesis of iron-binding proteins. Our results demonstrate the broad effects of a single noncoding RNA on iron homeostasis.
منابع مشابه
A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.
A small RNA, RyhB, was found as part of a genomewide search for novel small RNAs in Escherichia coli. The RyhB 90-nt RNA down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator). RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encod...
متن کاملThe small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli.
In Escherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpath...
متن کاملCharacterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation.
Vibrio cholerae encodes a small RNA with homology to Escherichia coli RyhB. Like E. coli ryhB, V. cholerae ryhB is negatively regulated by iron and Fur and is required for repression of genes encoding the superoxide dismutase SodB and multiple tricarboxylic acid cycle enzymes. However, V. cholerae RyhB is considerably longer (>200 nucleotides) than the E. coli RNA (90 nucleotides), and it regul...
متن کاملTranscript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli
Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule ...
متن کاملCoupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli.
RyhB is a small antisense regulatory RNA that is repressed by the Fur repressor and negatively regulates at least six mRNAs encoding Fe-binding or Fe-storage proteins in Escherichia coli. When Fe is limiting, RyhB levels rise, and target mRNAs are rapidly degraded. RyhB is very stable when measured after treatment of cells with the transcription inhibitor rifampicin, but is unstable when overal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 20 شماره
صفحات -
تاریخ انتشار 2005